5 years ago

Defect-Mediated CdS Nanobelt Photoluminescence Up-Conversion

Defect-Mediated CdS Nanobelt Photoluminescence Up-Conversion
Sergiu Draguta, Boldizsar Janko, Shubin Zhang, Masaru Kuno, Yuanxing Wang, Yurii V. Morozov, Alejandro Cadranel
Laser cooling in semiconductors has recently been demonstrated in cadmium sulfide nanobelts (NBs) as well as in organic–inorganic lead halide perovskites. Cooling by as much as 40 K has been shown in CdS nanobelts and by as much as 58 K in hybrid perovskite films. This suggests that further progress in semiconductor-based optical refrigeration can ultimately lead to solid state cryocoolers capable of achieving sub 10 K temperatures. In CdS, highly efficient photoluminescence (PL) up-conversion has been attributed to efficient exciton–longitudinal optical (LO) phonon coupling. However, the nature of its efficient anti-Stokes emission has not been established. Consequently, developing a detailed understanding about the mechanism leading to efficient PL up-conversion in CdS NBs is essential to furthering the nascent field of semiconductor laser cooling. In this study, we describe a detailed investigation of anti-Stokes photoluminescence (ASPL) in CdS nanobelts. Temperature- and frequency-dependent band edge emission and ASPL spectroscopies conducted on individual belts as well as ensembles suggest that CdS ASPL is defect-mediated via the involvement of donor–acceptor states.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b05095

DOI: 10.1021/acs.jpcc.7b05095

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.