3 years ago

Diffusion NMR Characterization of Catalytic Silica Supports: A Tortuous Path

Diffusion NMR Characterization of Catalytic Silica Supports: A Tortuous Path
Adam. F. Lee, Rob Evans, Christopher M. A. Parlett, Taylor J. Rottreau
Mesoporous silicas have found widespread application within the field of heterogeneous catalysis. Acid functionalization of such materials, through one-pot or postsynthetic grafting of sulfonic acid groups, imparts activity for fatty acid esterification, with the studious choice of pore geometry facilitating significant rate enhancements. Diffusion NMR has been utilized for the first time to characterize the structure of mesoporous silicas through the transport behavior of systematically related carboxylic acids confined within their mesopore networks. A reduced diffusion coefficient is obtained for species constrained within the 3-dimensional interconnected pores of KIT-6 relative to the 2-dimensional noninterconnected pore channels of SBA-15. The effective tortuosity of both porous silicas increases with the acid chain length, with the diffusion behavior of long-chain acids dominated by the alkyl chain and silica architecture. Carboxylic acid diffusion within these two pore networks is unlikely to be rate-limiting in catalytic esterification over sulfonic acid silica analogues. Physicochemical insights from diffusion NMR will aid the future design of optimal silica architectures for catalytic applications.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b02929

DOI: 10.1021/acs.jpcc.7b02929

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.