5 years ago

Role of Lone Pair Cations in Ferroelectric Tungsten Bronzes

Role of Lone Pair Cations in Ferroelectric Tungsten Bronzes
Tor Grande, Magnus Helgerud Sørby, Sverre Magnus Selbach, Gerhard Henning Olsen
The role of lone pair cations in tetragonal tungsten bronze (TTB) ferroelectrics has so far not been addressed in detail despite the importance of lone pairs for the polarization mechanism in the prototype ferroelectric perovskite PbTiO3. We report a combined experimental and computational study of the effect of lone pairs in ferroelectric tungsten bronzes with particular emphasis on the important high-temperature piezoelectric lead metaniobate (PN). The ambient crystal structure of PN is revised based on X-ray and neutron powder diffraction. The most likely cation-vacancy configurations identified by the structural analysis were assessed by electron density functional theory (DFT) calculations. The ferroelectric transition was characterized by high-temperature X-ray diffraction, and the origin of the ferroelectric polarization was studied by DFT, emphasizing the relationship between polarization and cation–vacancy ordering. Covalency between Pb and O is identified as the driving force for the orthorhombic distortion of the unit cell of PN and the polarization in-plane with respect to the chains of corner-sharing octahedra. Finally, to further elucidate the role of lone pairs in ferroelectric TTBs polar lattice instabilities and resulting polarization in the TTB model system K4R2Nb10O30 (R = La, ..., Gd, or Bi) were investigated by DFT.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b01817

DOI: 10.1021/acs.chemmater.7b01817

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.