3 years ago

Recent Advances in Structure-Based Drug Design Targeting Class A G Protein-Coupled Receptors Utilizing Crystal Structures and Computational Simulations

Recent Advances in Structure-Based Drug Design Targeting Class A G Protein-Coupled Receptors Utilizing Crystal Structures and Computational Simulations
Sun Choi, Shaherin Basith, Yoonji Lee
G protein-coupled receptors (GPCRs) represent the largest and most physiologically important integral membrane protein family, and these receptors respond to a wide variety of physiological and environmental stimuli. GPCRs are among the most critical therapeutic targets for numerous human diseases, and approximately one-third of the currently marketed drugs target this receptor family. The recent breakthroughs in GPCR structural biology have significantly contributed to our understanding of GPCR function, ligand binding, and pharmacological action as well as to the design of new drugs. This perspective highlights the latest advances in GPCR structures with a focus on the receptor–ligand interactions of each receptor family in class A nonrhodopsin GPCRs as well as the structural features for their activation, biased signaling, and allosteric mechanisms. The current state-of-the-art methodologies of structure-based drug design (SBDD) approaches in the GPCR research field are also discussed.

Publisher URL: http://dx.doi.org/10.1021/acs.jmedchem.6b01453

DOI: 10.1021/acs.jmedchem.6b01453

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.