5 years ago

Catalyst Screening and Kinetic Modeling for CO Production by High Pressure and Temperature Reverse Water Gas Shift for Fischer–Tropsch Applications

Catalyst Screening and Kinetic Modeling for CO Production by High Pressure and Temperature Reverse Water Gas Shift for Fischer–Tropsch Applications
Ville Alopaeus, Paolo Piermartini, Peter Pfeifer, Francisco Vidal Vázquez, Pekka Simell, Juha Lehtonen
In this work, catalyst screening and reaction kinetic modeling are performed for two Ni-based and one Rh-based commercial catalysts for a reverse water gas shift (rWGS) reaction under atmospheric and 30 bara pressure. Ni-based catalysts displayed higher activity compared to Rh-based catalysts despite the severe initial deactivation Ni-based catalysts suffered, which increases catalyst selectivity toward CO formation. Ni/Al2O3 catalyst with lower Ni content (2 w-%) exhibited higher selectivity toward CO formation compared to the Ni/Al2O3 catalyst with higher Ni content (15 wt %). The Ni/Al2O3 (2 wt % of Ni) catalyst was further tested for kinetic modeling. Three kinetic models were developed based on reaction mechanisms and kinetic models obtained from other publications for rWGS/WGS, methanation, and methane steam reforming reactions based on different mechanistic approaches. The model based on mechanistic assumptions originally proposed by Xu and Froment was concluded to be the most suitable to describe the high temperature reaction system of the rWGS and methanation over supported nickel catalyst. On the basis of statistical analysis, the model proposed by Xu and Froment was also concluded to be the best for the catalyst and reaction system studied in this work.

Publisher URL: http://dx.doi.org/10.1021/acs.iecr.7b01606

DOI: 10.1021/acs.iecr.7b01606

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.