5 years ago

Solvent-Driven Dynamical Crossover in the Phenylalanine Side-Chain from the Hydrophobic Core of Amyloid Fibrils Detected by 2H NMR Relaxation

Solvent-Driven Dynamical Crossover in the Phenylalanine Side-Chain from the Hydrophobic Core of Amyloid Fibrils Detected by 2H NMR Relaxation
Liliya Vugmeyster, Wei Qiang, Dmitry Ostrovsky, Isaac B. Falconer, Gina L. Hoatson
Aromatic residues are important markers of dynamical changes in proteins’ hydrophobic cores. In this work we investigated the dynamics of the F19 side-chain in the core of amyloid fibrils across a wide temperature range of 300 to 140 K. We utilized solid-state 2H NMR relaxation to demonstrate the presence of a solvent-driven dynamical crossover between different motional regimes, often also referred to as the dynamical transition. In particular, the dynamics are dominated by small-angle fluctuations at low temperatures and by π-flips of the aromatic ring at high temperatures. The crossover temperature is more than 43 degrees lower for the hydrated state of the fibrils compared to the dry state, indicating that interactions with water facilitate π-flips. Further, crossover temperatures are shown to be very sensitive to polymorphic states of the fibrils, such as the 2-fold and 3-fold symmetric morphologies of the wild-type protein as well as D23N mutant protofibrils. We speculate that these differences can be attributed, at least partially, to enhanced interactions with water in the 3-fold polymorph, which has been shown to have a water-accessible cavity. Combined with previous studies of methyl group dynamics, the results highlight the presence of multiple dynamics modes in the core of the fibrils, which was originally believed to be quite rigid.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b04726

DOI: 10.1021/acs.jpcb.7b04726

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.