5 years ago

Dual Action of Hydrotropes at the Water/Oil Interface

Dual Action of Hydrotropes at the Water/Oil Interface
Vladimir N. Kuryakov, Andrei A. Novikov, Anton P. Semenov, Jeffery B. Klauda, Viviana Monje-Galvan, Mikhail A. Anisimov
Hydrotropes are substances containing small amphiphilic molecules, which increase solubility of nonpolar (hydrophobic) substances in water. Hydrotropes may form dynamic clusters (less or about 1 ns lifetime) with water molecules; such clusters can be viewed as “pre-micelles” or as “micellar-like” structural fluctuations. We present the results of experimental and molecular dynamics (MD) simulation studies of interfacial phenomena and liquid–liquid equilibrium in the mixtures of water and cyclohexane with the addition of a typical nonionic hydrotrope, tertiary butanol. The interfacial tension between the aqueous and oil phases was measured by Wilhelmy plate and spinning drop methods with overlapping conditions in excellent agreement between techniques. The correlation length of the concentration fluctuations, which is proportional to the thickness of the interface near the liquid–liquid critical point, was measured by dynamic light scattering. In addition, we studied the interfacial tension and water–oil interfacial profiles by MD simulations of a model representing this ternary system. Both experimental and simulation studies consistently demonstrate a spectacular crossover between two limits in the behavior of the water–oil interfacial properties upon addition of the hydrotrope: at low concentrations the hydrotrope acts as a surfactant, decreasing the interfacial tension by adsorption of hydrotrope molecules on the interface, while at higher concentrations it acts as a cosolvent with the interfacial tension vanishing in accordance with a scaling power-law upon approach to the liquid–liquid critical point. It is found that the relation between the thickness of the interface and the interfacial tension follows a scaling law in the entire range of interfacial tensions, from a “sharp” interface in the absence of the hydrotrope to a “smooth” interface near the critical point. We also demonstrate the generic nature of the dual behavior of hydrotropes by comparing the studied ternary system with systems containing different hydrocarbons and hydrotropes.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b05156

DOI: 10.1021/acs.jpcc.7b05156

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.