5 years ago

Effect of Drying Rate on Aerosol Particle Morphology

Effect of Drying Rate on Aerosol Particle Morphology
Muhammad Bilal Altaf, Miriam Arak Freedman
The morphology of aerosol particles impacts their role in the climate system. In the submicron size regime, the morphology of particles that undergo liquid–liquid phase separation is dependent on their size, where for some systems small particles are homogeneous and large particles are phase-separated. We use cryogenic transmission electron microscopy to probe the morphology of model organic aerosol systems. We observe that the transition region (where both homogeneous and phase-separated morphologies are seen) spans 121 nm at the fastest drying rates with a midpoint diameter > 170 nm. By slowing the drying rate over several orders of magnitude, the transition region shifts to smaller diameters (midpoint < 40 nm) and the width narrows to 4 nm. Our results suggest that the size-dependent morphology originates from an underlying finite size effect, rather than solely kinetics, due to the presence of a size dependence even at the slowest drying rates.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b01327

DOI: 10.1021/acs.jpclett.7b01327

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.