5 years ago

Ca-alginate as a support matrix for Pb(II) biosorption with immobilized biofilm associated extracellular polymeric substances of Pseudomonas aeruginosa N6P6

Ca-alginate as a support matrix for Pb(II) biosorption with immobilized biofilm associated extracellular polymeric substances of Pseudomonas aeruginosa N6P6
The contribution of immobilized biofilm associated extracellular polymeric substances (EPS) of a marine bacterium Pseudomonas aeruginosa N6P6 in sequestering Pb(II) was investigated. The interaction between extracellular polymeric substances (EPS) and Pb(II) during the sorption process of Pb(II) was investigated using three-dimensional excitation-emission matrix (3D-EEM) and atomic absorption spectroscopy. 3D-EEM showed that the intensities of protein (PN) like fluorophores decreased during the Pb(II) sorption process. The interaction of Pb(II) and EPS fluorophore occurs spontaneously (ΔG=−13.79kJ/K/mol) at 25°C with a binding constant value of 5.67 lmol−1. Through comparison of Pb(II) sequestration on immobilized live biomass and pristine alginate beads, we found that immobilized biofilm derived EPS contribute significantly to Pb(II) sequestration. The biosorption was studied by varying pH from 3 to 8 and initial Pb(II) concentration from 100 to 600mgl−1 to find out the optimized conditions for maximum Pb(II) removal by various biosorbents. The Pb(II) biosorption capacity of the EPS alginate beads was significantly higher (416.67mgg−1) than that of alginate biomass beads (232.55mgg−1) and pristine alginate beads (120.48mgg−1) (P<0.05; One way ANOVA and Tukey’s HSD test). The maximum adsorption of Pb(II) on all the prepared biosorbents were observed at pH 6. Two equilibrium models, Langmuir and Freundlich, were used for computing the efficiency of Pb(II) binding by the developed biosorbents. The adsorption isotherms, Langmuir and the Freundlich type models were found to exhibit good fit (R2 =0.99) to the experimental data. The reusability of the EPS alginate biosorbent was studied by Pb adsorption (68.33%) and desorption (66.8%) from contaminated water after three adsorption/desorption cycle.

Publisher URL: www.sciencedirect.com/science

DOI: S1385894717312512

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.