5 years ago

Bifunctional metal phosphide FeMnP films from single source metal organic chemical vapor deposition for efficient overall water splitting

Bifunctional metal phosphide FeMnP films from single source metal organic chemical vapor deposition for efficient overall water splitting
Developing stable and efficient bifunctional catalysts for overall water splitting into hydrogen and oxygen is a critical step in the realization of several clean-energy technologies. Here we report a robust and highly active electrocatalyst that is constructed by deposition of the ternary metal phosphide FeMnP onto graphene-protected nickel foam by metal-organic chemical vapor deposition from a single source precursor. FeMnP exhibits high electrocatalytic activity toward both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Utilizing FeMnP/GNF as both the anode and the cathode for overall water splitting, a current density of 10mAcm−2 is achieved at a cell voltage of as low as 1.55V with excellent stability. Complementary density functional theory (DFT) calculations suggest that facets exposing both Fe and Mn sites are necessary to achieve high HER activity. The present work provides a facile strategy for fabricating highly efficient electrocatalysts from earth-abundant materials for overall water splitting.

Publisher URL: www.sciencedirect.com/science

DOI: S221128551730441X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.