3 years ago

Straightforward synthesis of nitrogen-doped carbon nanotubes as highly active bifunctional electrocatalysts for full water splitting

Straightforward synthesis of nitrogen-doped carbon nanotubes as highly active bifunctional electrocatalysts for full water splitting
The success of intermittent renewable energy systems relies on the development of energy storage technologies. Particularly, active and stable water splitting electrocatalysts operating in the same electrolyte are required to enhance the overall efficiency and reduce the costs. Here we report a precise and facile synthesis method to control nitrogen active sites for producing nitrogen doped multi-walled carbon nanotube (NMWNT) with high activity toward both oxygen and hydrogen evolution reactions (OER and HER). The NMWNT shows an extraordinary OER activity, superior to the most active non-metal based OER electrocatalysts. For OER, the NMWNT requires overpotentials of only 320 and 360mV to deliver current densities of 10 and 50mAcm−2 in 1.0M NaOH, respectively. This metal-free electrocatalyst also exhibits a proper performance toward HER with a moderate overpotential of 340mV to achieve a current density of 10mAcm−2 in 0.1M NaOH. This catalyst also shows high stability after long-time water oxidation without notable changes in the structure of the material. It is revealed that the electron-withdrawing pyridinic N moieties in the NMWNTs could serve as the active sites for OER and HER. Our findings open up new avenues for the development of metal-free electrocatalysts for full water splitting.

Publisher URL: www.sciencedirect.com/science

DOI: S0021951717302439

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.