5 years ago

Rh-Mn/tungsten carbides for direct synthesis of mixed alcohols from syngas: Effects of tungsten carbide phases

Rh-Mn/tungsten carbides for direct synthesis of mixed alcohols from syngas: Effects of tungsten carbide phases
Effects of the crystalline tungsten carbide (WxC) phases on an ordered mesoporous bimetallic Rh-Mn/WxC, which were prepared by changing carbon source to tungsten (C/W) ratios of the WxC support using a hard-template of an ordered mesoporous SBA-15, were investigated for a direct synthesis of mixed alcohols by CO hydrogenation from syngas. The C/W ratios on the mesoporous Rh-Mn/WxC showed a significantly different catalytic activity, especially on the C1 - C3 alcohol productivity. The Rh-Mn/WxC prepared at C/W molar ratio of 10 having a metastable W2C main phase (Rh-Mn/WxC(10)) revealed a higher CO conversion of 8.1% and selectivity to higher alcohols of 54.4% compared to other catalysts having a main crystalline phases of WO3 or WC. The enhanced catalytic activity and selectivity to mixed alcohols on the Rh-Mn/WxC(10) were attributed to the largely exposed smaller active Rh nanoparticles with its stronger interactions with the metastable W2C phases. The superior activity was originated from the intimate interactions of Rh nanoparticles with Mn promoter by maintaining proper oxidation states confirmed by surface ratios of the metallic Rh to oxidized Rh n+ species. The stable preservation of the ordered mesoporous structures of the W2C phase in the amorphous carbon matrixes significantly altered the chemical states of the small Rh nanoparticles below 2 nm in size by preferentially existing on the outer surfaces of the W2C support, which resulted in showing an enhanced productivity of higher C1 –C3 alcohols with 171.8 g/(kgcat·h).

Publisher URL: www.sciencedirect.com/science

DOI: S1387181117304985

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.