5 years ago

Broadband antireflective superhydrophilic antifogging nano-coatings based on three-layer system

Broadband antireflective superhydrophilic antifogging nano-coatings based on three-layer system
The multifunctional nano-coatings with super-wettability, unique optical property, and excellent mechanical strength and weatherability are highly desirable due to their wide applications. However, up to now, it is still very difficult to balance the relationships among these properties due to structural confliction. In this work, the broadband antireflective superhydrophilic antifogging nano-coatings are successfully constructed based on three-layer system by a sequential dip-coating method. The coating of dendrimer-like mesoporous silica nanoparticles (DMSNs) as top-layer not only increases the roughness of coating surface to enhance the wettability, but also keep high transmittance of the coated glass slides. Simple chemical vapor deposition is performed to improve the mechanical stability of nano-coatings. The finally obtained glass slide with the optimal nano-coating has high transmittance (97.7% at the wavelength of 494 nm, and ca. 5.0% increase of mean transmittance in the visible wavelength range of 390–780 nm), superhydrophilic (WCAs after 0.5 s of spreading: 4.3°) anti-fogging behavior, and good mechanical strength. This work provides an exploration way about how to balance the structural parameters to obtain the multifunctional nano-coatings for optical devices and energy harvesting.

Publisher URL: www.sciencedirect.com/science

DOI: S1387181117304894

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.