5 years ago

Electronic Properties of Triazoles. Experimental and Computational Determination of Carbocation and Radical-Stabilizing Properties

Electronic Properties of Triazoles. Experimental and Computational Determination of Carbocation and Radical-Stabilizing Properties
Kyle Chormanski, Gabriel Peirats, Xavier Creary, Carol Renneburg
Three fluorobenzenes substituted with meta-triazole groups have been prepared, and 19F chemical shifts indicate that these triazole groups are all inductively electron-withdrawing in character, with the 1,5-triazole being the most electron-withdrawing. σ+ values for these three triazoles have also been determined from solvolysis rates of substituted cumyl trifluoroacetates. When substituted in the para-position, the 1,4 and the 2,4-triazoles are cation-stabilizing, whereas the 1,5-triazole is carbocation-destabilizing. γ+ values indicate that the 1,4 triazole group is cation-stabilizing relative to the phenyl group, albeit the 1,5 triazole is significantly destabilizing relative to phenyl. These studies all suggest that the 1,5-triazole group exerts a strong electron-withdrawing effect on carbocations that is not offset by a resonance effect. The three triazole groups all enhance the methylenecyclopropane rearrangement rate and are therefore radical stabilizers. The smallest stabilizing effect is seen for the 1,5-triazole, and this is attributed to the triazole group being twisted out of conjugation in the developing benzylic radical. Finally, the anionic triazole group is the most effective radical-stabilizing group. Computational studies indicate that these triazole groups all stabilize benzylic radicals by a spin delocalization mechanism.

Publisher URL: http://dx.doi.org/10.1021/acs.joc.7b00548

DOI: 10.1021/acs.joc.7b00548

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.