4 years ago

Synthesis and thiol–ene photopolymerization of (meth)allyl-terminated polysulfides

Synthesis and thiol–ene photopolymerization of (meth)allyl-terminated polysulfides
Robson F. Storey, Mark R. Brei, Brian R. Donovan, Derek L. Patton
Thiol-terminated polysulfides (PS) are cured by mixing with an oxidant, resulting in limited shelf- and/or pot-life, depending on whether formulated as a one- or two-component system. Mixtures of thiol- and alkene-terminated polysulfides offer the potential for an on-demand curing process through thiol–ene photopolymerization. Thiol end groups of commercial polysulfides, PS-1 (1000 g/mol) and PS-2 (3000 g/mol), were converted to alkene by reaction with (meth)allyl bromide. Photopolymerizations were performed by irradiating films of equimolar thiol:ene mixtures at 320–500 nm (30 mW/cm2) in the presence of 5 wt % 2,2-dimethoxy-2-phenyl-acetophenone (DMPA). Reaction kinetics were measured using real-time FTIR by monitoring absorbances at 3075 cm−1 (alkene) or 2550 cm−1 (thiol). In the absence of any reactive diluent, mixtures of thiol and alkene polysulfides failed to gel notwithstanding high reaction conversion (>90%). Partial or total replacement of the thiol polysulfide component with pentaerythritol tetrakis(3-mercaptopropionate) (PETMP) yielded solid elastomeric films and ultimate reaction conversions of 80–96% after 5 min irradiation. Crosshatch adhesion measured on glass, aluminum, and steel was very poor (0B) for (meth)allyl PS-1/PETMP and poor (2B) for (meth)allyl PS-2/PETMP without adhesion promoters. (3-Mercaptopropyl)trimethoxysilane (1 wt %) significantly improved adhesion of (meth)allyl PS-2/PETMP on all substrates (4B) but yielded no improvement for (meth)allyl-terminated PS-1/PETMP. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45523.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/app.45523

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.