3 years ago

Ternary hybrid nanoparticles of reduced graphene oxide/graphene-like MoS2/zirconia as lubricant additives for bismaleimide composites with improved mechanical and tribological properties

Ternary hybrid nanoparticles of reduced graphene oxide/graphene-like MoS2/zirconia as lubricant additives for bismaleimide composites with improved mechanical and tribological properties
To develop low friction coefficient and high wear resistance composites, the ternary hybrid nanoparticles consisting of reduced graphene oxide (rGO), graphene-like MoS2 and ZrO2 with active amino groups (NH2-rGO/MoS2/ZrO2) were successfully prepared through a facile and effective one-pot hydrothermal method. Subsequently, the bismaleimide (BMI) composites with different weight fraction of fillers were fabricated to enhance the mechanical and tribological properties of BMI resin. The results demonstrate that the layers of MoS2 in the filler can significantly decrease and just a little content of fillers can remarkably improve the mechanical and tribological properties of BMI resin. In particular, the average friction coefficient and volume wear rate of the BMI composite containing 0.4wt.% NH2-rGO/MoS2/ZrO2 can reach the lowest value of 0.15 and 1.5×10−6 mm3/(N·m), respectively. The excellent friction-reducing and wear-resistance performances are mainly attributed to the good synergistic effect among the rGO nanosheets, graphene-like MoS2 and ZrO2.

Publisher URL: www.sciencedirect.com/science

DOI: S1359835X17302312

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.