3 years ago

Highly Active and Selective Hydrogenation of CO2 to Ethanol by Ordered Pd–Cu Nanoparticles

Highly Active and Selective Hydrogenation of CO2 to Ethanol by Ordered Pd–Cu Nanoparticles
Xiaoqing Huang, Xingyi Wang, Qi Shao, Qiguang Dai, Shuxing Bai, Pengtang Wang
Carbon dioxide (CO2) hydrogenation to ethanol (C2H5OH) is considered a promising way for CO2 conversion and utilization, whereas desirable conversion efficiency remains a challenge. Herein, highly active, selective and stable CO2 hydrogenation to C2H5OH was enabled by highly ordered Pd-Cu nanoparticles (NPs). By tuning the composition of the Pd-Cu NPs and catalyst supports, the efficiency of CO2 hydrogenation to C2H5OH was well optimized with Pd2Cu NPs/P25 exhibiting high selectivity to C2H5OH of up to 92.0% and the highest turnover frequency of 359.0 h–1. Diffuse reflectance infrared Fourier transform spectroscopy results revealed the high C2H5OH production and selectivity of Pd2Cu NPs/P25 can be ascribed to boosting *CO (adsorption CO) hydrogenation to *HCO, the rate-determining step for the CO2 hydrogenation to C2H5OH.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b03101

DOI: 10.1021/jacs.7b03101

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.