5 years ago

Seventeen-Coordinate Actinide Helium Complexes

Seventeen-Coordinate Actinide Helium Complexes
Nikolas Kaltsoyannis
The geometries and electronic structures of molecular ions featuring He atoms complexed to actinide cations are explored computationally using density functional and coupled cluster theories. A new record coordination number is established, as AcHe173+, ThHe174+, and PaHe174+ are all found to be true geometric minima, with the He atoms clearly located in the first shell around the actinide. Analysis of AcHen3+ (n=1–17) using the quantum theory of atoms in molecules (QTAIM) confirms these systems as having closed shell, charge-induced dipole bonding. Excellent correlations (R2>0.95) are found between QTAIM metrics (bond critical point electron densities and delocalization indices) and the average Ac−He distances, and also with the incremental He binding energies. Sweet seventeen: The theoretically predicted compounds AcHe173+, ThHe174+, and PaHe174+ have stable, one-shell true minimum structures with the highest coordination number yet reported. See DFT optimized structure; actinium atom blue, helium atoms yellow.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/anie.201700245

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.