5 years ago

Phase and Composition Tuning of 1D Platinum-Nickel Nanostructures for Highly Efficient Electrocatalysis

Phase and Composition Tuning of 1D Platinum-Nickel Nanostructures for Highly Efficient Electrocatalysis
Xiaoqing Huang, Lingzheng Bu, Jun Guo, Dandan Zhao, Kezhu Jiang, Qi Shao
Among various platinum (Pt)-based nanostructures, porous or hollow ones are of great importance because they exhibit fantastic oxygen reduction reaction (ORR) enhancements and maximize atomic utilization by exposing both exterior and interior surfaces. Here, a new class of porous Pt3Ni nanowires (NWs) with 1D architecture, an ultrathin Pt-rich shell, high index facets, and a highly open structure is designed via a selective etching strategy by using the phase and composition segregated Pt-Ni NWs as the starting material. The porous feature of Pt3Ni NWs can be readily fulfilled by changing the Pt/Ni atomic ratio of the starting Pt-Ni NWs. Such porous Pt3Ni NWs show extraordinary activity and stability enhancements toward methanol oxidation reaction and ORR. The porous Pt3Ni NWs can deliver ORR mass activity of 5.60 A mg−1, which is 37.3-fold higher than that of the Pt/C. They also show outstanding stability with negligible activity loss after 20 000 cycles. This study offers a unique approach for the design of complex nanostructures as efficient catalysts through precisely tailoring. Porous Pt3Ni nanowires (NWs) are obtained by selectively etching Pt-Ni NWs with phase and component control. Due to their unique structure of high index facets, highly open structure, 1D structure, and ultrathin Pt-rich surface, the resulting porous Pt3Ni NWs show extraordinary activity and stability toward the oxygen reduction reaction, suggesting that superior Pt-based catalysts can be developed by precisely tailoring.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adfm.201700830

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.