5 years ago

Molecular Design of Mesoporous NiCo2O4 and NiCo2S4 with Sub-Micrometer-Polyhedron Architectures for Efficient Pseudocapacitive Energy Storage

Molecular Design of Mesoporous NiCo2O4 and NiCo2S4 with Sub-Micrometer-Polyhedron Architectures for Efficient Pseudocapacitive Energy Storage
Zhenbin Wang, Zongping Shao, Wei Zhou, Moses Tade, Yijun Zhong, Yu Liu
Spinel-type NiCo2O4 (NCO) and NiCo2S4 (NCS) polyhedron architectures with sizes of 500–600 nm and rich mesopores with diameters of 1–2 nm are prepared facilely by the molecular design of Ni and Co into polyhedron-shaped zeolitic imidazolate frameworks as solid precursors. Both as-prepared NCO and NCS nanostructures exhibit excellent pseudocapacitance and stability as electrodes in supercapacitors. In particular, the exchange of O2− in the lattice of NCO with S2− obviously improves the electrochemical performance. NCS shows a highly attractive capacitance of 1296 F g−1 at a current density of 1 A g−1, ultrahigh rate capability with 93.2% capacitance retention at 10 A g−1, and excellent cycling stability with a capacitance retention of 94.5% after cycling at 1 A g−1 for 6000 times. The asymmetric supercapacitor with an NCS negative electrode and an active carbon positive electrode delivers a very attractive energy density of 44.8 Wh kg−1 at power density 794.5 W kg−1, and a favorable energy density of 37.7 Wh kg−1 is still achieved at a high power density of 7981.1 W kg−1. The specific mesoporous polyhedron architecture contributes significantly to the outstanding electrochemical performances of both NCO and NCS for capacitive energy storage. The successful synthesis of porous polyhedral-structured zeolitic imidazole framework–NiCo2O4 (ZIF–NCO) and zeolitic imidazole framework–NiCo2S4 (ZIF–NCS) nanoparticles by using a Ni and Co bimetallic zeolitic imidazolate framework as the solid precursors is reported. Both ZIF–NCO and ZIF–NCS exhibit excellent pseudocapacitance in the application of supercapacitors.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adfm.201701229

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.