5 years ago

Experimental and Computational Investigation of the Optical, Electronic, and Electrochemical Properties of Hydrogenated α-Fe2O3

Experimental and Computational Investigation of the Optical, Electronic, and Electrochemical Properties of Hydrogenated α-Fe2O3
Chenghua Sun, Leone Spiccia, Li Li, Xiwang Zhang, Yichun Yin
With the combination of experimental and computational approaches, the impact of hydrogenation on the optical, electronic and electrochemical properties of Fe2O3 for water splitting have been studied. Under high pressure, hydrogen incorporation into the Fe2O3 lattice has been achieved, and hydrogen dopants can be released with heat treatment. With H-doping, magnetite Fe3O4 has been found to form at the edge of Fe2O3 nanoparticles. H-incorporation can narrow the band gap by ∼0.4 eV and slightly reduce the overpotential (by 140 mV) for oxygen evolution reaction, but due to the localization of hydrogen (bonded with oxygen), a slightly lower charge carrier density resulted. Computational studies reveal that all of the above changes are essentially related to the local states brought by H-dopants. This study provides an in-depth understanding of the optical, electronic, and catalytic properties of hydrogenated Fe2O3.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b00593

DOI: 10.1021/acs.jpcc.7b00593

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.