4 years ago

Anthropogenic iron oxide aerosols enhance atmospheric heating

Anthropogenic iron oxide aerosols enhance atmospheric heating
Yutaka Kondo, Nobuhiro Moteki, Sho Ohata, Kouji Adachi, Atsushi Yoshida, Tomoo Harigaya, Makoto Koike
Combustion-induced carbonaceous aerosols, particularly black carbon (BC) and brown carbon (BrC), have been largely considered as the only significant anthropogenic contributors to shortwave atmospheric heating. Natural iron oxide (FeOx) has been recognized as an important contributor, but the potential contribution of anthropogenic FeOx is unknown. In this study, we quantify the abundance of FeOx over East Asia through aircraft measurements using a modified single-particle soot photometer. The majority of airborne FeOx particles in the continental outflows are of anthropogenic origin in the form of aggregated magnetite nanoparticles. The shortwave absorbing powers (Pabs) attributable to FeOx and to BC are calculated on the basis of their size-resolved mass concentrations and the mean Pabs(FeOx)/Pabs(BC) ratio in the continental outflows is estimated to be at least 4–7%. We demonstrate that in addition to carbonaceous aerosols the aggregate of magnetite nanoparticles is a significant anthropogenic contributor to shortwave atmospheric heating.

Publisher URL: http://www.nature.com/articles/ncomms15329

DOI: 10.1038/ncomms15329

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.