5 years ago

Elucidating the Copper–Hägg Iron Carbide Synergistic Interactions for Selective CO Hydrogenation to Higher Alcohols

Elucidating the Copper–Hägg Iron Carbide Synergistic Interactions for Selective CO Hydrogenation to Higher Alcohols
Riguang Zhang, Junjun Shan, Tianpin Wu, Luan Nguyen, Zhenghong Bao, Binghui Ge, Fei Yu, Baobao Cao, Baojun Wang, Jonathan W. Pote, Franklin Feng Tao, Yongwu Lu
CO hydrogenation to higher alcohols (C2+OH) provides a promising route to convert coal, natural gas, shale gas, and biomass feedstocks into value-added chemicals and transportation fuels. However, the development of nonprecious metal catalysts with satisfactory activity and well-defined selectivity toward C2+OH remains challenging and impedes the commercialization of this process. Here, we show that the synergistic geometric and electronic interactions dictate the activity of Cu0–χ-Fe5C2 binary catalysts for selective CO hydrogenation to C2+OH, outperforming silica-supported precious Rh-based catalysts, by using a combination of experimental evidence from bulk, surface-sensitive, and imaging techniques collected on real and high-performance Cu–Fe binary catalytic systems coupled with density functional theory calculations. The closer is the d-band center to the Fermi level of Cu0–χ-Fe5C2(510) surface than those of χ-Fe5C2(510) and Rh(111) surface, and the electron-rich interface of Cu0–χ-Fe5C2(510) due to the delocalized electron transfer from Cu0 atoms, facilitates CO activation and CO insertion into alkyl species to C2-oxygenates at the interface of Cu0–χ-Fe5C2(510) and thus enhances C2H5OH selectivity. Starting from the CHCO intermediate, the proposed reaction pathway for CO hydrogenation to C2H5OH on Cu0–χ-Fe5C2(510) is CHCO + (H) → CH2CO + (H) → CH3CO + (H) → CH3CHO + (H) → CH3CH2O + (H) → C2H5OH. This study may guide the rational design of high-performance binary catalysts made from earth-abundant metals with synergistic interactions for tuning selectivity.

Publisher URL: http://dx.doi.org/10.1021/acscatal.7b01469

DOI: 10.1021/acscatal.7b01469

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.