5 years ago

Solid-Contact pH Sensor without CO2 Interference with a Superhydrophobic PEDOT-C14 as Solid Contact: The Ultimate “Water Layer” Test

Solid-Contact pH Sensor without CO2 Interference with a Superhydrophobic PEDOT-C14 as Solid Contact: The Ultimate “Water Layer” Test
Marcin Guzinski, Bradford D. Pendley, Anahita Izadyar, Paul D’Orazio, Ernő Lindner, Jennifer M. Jarvis
The aim of this study was to find a conducting polymer-based solid contact (SC) for ion-selective electrodes (ISEs) that could become the ultimate, generally applicable SC, which in combination with all kinds of ion-selective membranes (ISMs) would match the performance characteristics of conventional ISEs. We present data collected with electrodes utilizing PEDOT-C14, a highly hydrophobic derivative of poly(3,4-ethylenedioxythiophene), PEDOT, as SC and compare its performance characteristics with PEDOT-based SC ISEs. PEDOT-C14 has not been used in SC ISEs previously. The PEDOT-C14-based solid contact (SC) ion-selective electrodes (ISEs) (H+, K+, and Na+) have outstanding performance characteristics (theoretical response slope, short equilibration time, excellent potential stability, etc.). Most importantly, PEDOT-C14-based SC pH sensors have no CO2 interference, an essential pH sensors property when aimed for whole-blood analysis. The superhydrophobic properties (water contact angle: 136 ± 5°) of the PEDOT-C14 SC prevent the detachment of the ion-selective membrane (ISM) from its SC and the accumulation of an aqueous film between the ISM and the SC. The accumulation of an aqueous film between the ISM and its SC has a detrimental effect on the sensor performance. Although there is a test for the presence of an undesirable water layer, if the conditions for this test are not selected properly, it does not provide an unambiguous answer. On the other hand, recording the potential drifts of SC electrodes with pH-sensitive membranes in samples with different CO2 levels can effectively prove the presence or absence of a water layer in a short time period.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b02009

DOI: 10.1021/acs.analchem.7b02009

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.