5 years ago

Gold Redox Catalysis through Base-Initiated Diazonium Decomposition toward Alkene, Alkyne, and Allene Activation

Gold Redox Catalysis through Base-Initiated Diazonium Decomposition toward Alkene, Alkyne, and Allene Activation
Stephen E. Motika, Haihui Peng, Xiaodong Shi, Boliang Dong
The discovery of photoassisted diazonium activation toward gold(I) oxidation greatly extended the scope of gold redox catalysis by avoiding the use of a strong oxidant. Some practical issues that limit the application of this new type of chemistry are the relative low efficiency (long reaction time and low conversion) and the strict reaction condition control that is necessary (degassing and inert reaction environment). Herein, an alternative photofree condition has been developed through Lewis base induced diazonium activation. With this method, an unreactive AuI catalyst was used in combination with Na2CO3 and diazonium salts to produce a AuIII intermediate. The efficient activation of various substrates, including alkyne, alkene and allene was achieved, followed by rapid AuIII reductive elimination, which yielded the C−C coupling products with good to excellent yields. Relative to the previously reported photoactivation method, our approach offered greater efficiency and versatility through faster reaction rates and broader reaction scope. Challenging substrates such as electron rich/neutral allenes, which could not be activated under the photoinitiation conditions (<5 % yield), could be activated to subsequently yield the desired coupling products in good to excellent yield. Winning with gold: An alternative photofree condition for gold oxidation has been developed through Lewis base induced diazonium activation. With this method, an unreactive AuI catalyst was used in combination with NaHCO3 and diazonium salts to produce a AuIII intermediate. The efficient activation of various substrates, including alkyne, alkene and allene was achieved, followed by rapid AuIII reductive elimination, which yielded the C−C coupling products with good to excellent yields. Challenging substrates such as electron rich/neutral allenes could also be activated to subsequently yield the desired coupling products in good to excellent yield.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/chem.201701970

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.