5 years ago

Phase Diagram of Methane and Carbon Dioxide Hydrates Computed by Monte Carlo Simulations

Phase Diagram of Methane and Carbon Dioxide Hydrates Computed by Monte Carlo Simulations
Magnus H. Waage, Signe Kjelstrup, Thijs J. H. Vlugt
Molecular Monte Carlo simulations are used to compute the three-phase (hydrate–liquid water–gas) equilibrium lines of methane and carbon dioxide hydrates, using the Transferable Potentials for Phase Equilibria model for carbon dioxide, the united atom optimized potential for liquid simulations model for methane, and the TIP4P/Ice and TIP4P/2005 models for water. The three-phase equilibrium temperatures have been computed for pressures between 50 and 4000 bar via free-energy calculations. The computed results are as expected for methane hydrates but deviate from the direct-coexistence molecular dynamics (MD) studies for carbon dioxide hydrates. At pressures higher than 1000 bar, both the methane and carbon dioxide hydrates dissociate at lower temperatures than expected from experiments and MD studies. The dissociation enthalpy is found to be largely independent on water models, and its values are measured to be 7.6 and 6.0 kJ/mol of water for methane hydrates and carbon dioxide hydrates, respectively. We evaluate the effect of systematic errors on the determination of chemical potentials and show that systematic errors of 0.1 kJ/mol in the chemical potential of water correspond to deviations of 5 K in the three-phase equilibrium temperatures.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b03071

DOI: 10.1021/acs.jpcb.7b03071

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.