3 years ago

Structural organization of the actin-spectrin-based membrane skeleton in dendrites and soma of neurons [Neuroscience]

Structural organization of the actin-spectrin-based membrane skeleton in dendrites and soma of neurons [Neuroscience]
Boran Han, Xiaowei Zhuang, Chenglong Xia, Ruobo Zhou

Actin, spectrin, and associated molecules form a membrane-associated periodic skeleton (MPS) in neurons. In the MPS, short actin filaments, capped by actin-capping proteins, form ring-like structures that wrap around the circumference of neurites, and these rings are periodically spaced along the neurite by spectrin tetramers, forming a quasi-1D lattice structure. This 1D MPS structure was initially observed in axons and exists extensively in axons, spanning nearly the entire axonal shaft of mature neurons. Such 1D MPS was also observed in dendrites, but the extent to which it exists and how it develops in dendrites remain unclear. It is also unclear whether other structural forms of the membrane skeleton are present in neurons. Here, we investigated the spatial organizations of spectrin, actin, and adducin, an actin-capping protein, in the dendrites and soma of cultured hippocampal neurons at different developmental stages, and compared results with those obtained in axons, using superresolution imaging. We observed that the 1D MPS exists in a substantial fraction of dendritic regions in relatively mature neurons, but this structure develops slower and forms with a lower propensity in dendrites than in axons. In addition, we observed that spectrin, actin, and adducin also form a 2D polygonal lattice structure, resembling the expanded erythrocyte membrane skeleton structure, in the somatodendritic compartment. This 2D lattice structure also develops substantially more slowly in the soma and dendrites than the development of the 1D MPS in axons. These results suggest membrane skeleton structures are differentially regulated across different subcompartments of neurons.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.