3 years ago

Efficient Carrier-to-Exciton Conversion in Field Emission Tunnel Diodes Based on MIS-Type van der Waals Heterostack

Efficient Carrier-to-Exciton Conversion in Field Emission Tunnel Diodes Based on MIS-Type van der Waals Heterostack
Goki Eda, Justin Zhou Yong, Leiqiang Chu, Junyong Wang, Shunfeng Wang, Francesco Giustiniano, Weijie Zhao, Ivan Verzhbitskiy
We report on efficient carrier-to-exciton conversion and planar electroluminescence from tunnel diodes based on a metal–insulator–semiconductor (MIS) van der Waals heterostack consisting of few-layer graphene (FLG), hexagonal boron nitride (hBN), and monolayer tungsten disulfide (WS2). These devices exhibit excitonic electroluminescence with extremely low threshold current density of a few pA·μm–2, which is several orders of magnitude lower compared to the previously reported values for the best planar EL devices. Using a reference dye, we estimate the EL quantum efficiency to be ∼1% at low current density limit, which is of the same order of magnitude as photoluminescence quantum yield at the equivalent excitation rate. Our observations reveal that the efficiency of our devices is not limited by carrier-to-exciton conversion efficiency but by the inherent exciton-to-photon yield of the material. The device characteristics indicate that the light emission is triggered by injection of hot minority carriers (holes) to n-doped WS2 by Fowler–Nordheim tunneling and that hBN serves as an efficient hole-transport and electron-blocking layer. Our findings offer insight into the intelligent design of van der Waals heterostructures and avenues for realizing efficient excitonic devices.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b02617

DOI: 10.1021/acs.nanolett.7b02617

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.