3 years ago

Efficient Solid-State Electrochemiluminescence from High-Quality Perovskite Quantum Dot Films

Efficient Solid-State Electrochemiluminescence from High-Quality Perovskite Quantum Dot Films
Jingjing Xue, Jun-Jie Zhu, Guizheng Zou, Jinchun Xu, Ziyi Zhang, Lingling Li, Qin Xu, Fenfen Zheng
Halide perovskite materials have emerged as a new class of revolutionary photovoltaic and optoelectronic nanomaterials. However, the study on electrochemiluminescence (ECL) from halide perovskite nanomaterials is still in its infancy due to their instability, sensitivity, and difficulties in purification and film formation. Here, we propose a scraping coating method for the fabrication of high-quality halide perovskite quantum dot (QD) film on electrode, which shows dense and uniform packing with minimum grain size. When CsPbBr3 QDs are taken as model materials, highly efficient ECL can be obtained from such perovskite QD film with anhydrous ethyl acetate as both electrolyte and coreactant. The CsPbBr3 QD film displays intense and stable ECL with ultranarrow emission spectrum bandwidth (24 nm). The CsPbBr3 QD film shows an extremely high ECL efficiency which is up to 5 times relative to the standard Ru(bpy)32+/tri-n-propylamine system. This approach is universal and also applies to hybrid organic–inorganic halide perovskite QDs. This work not only extends the properties and applications of halide perovskite materials but also provides a new method for the in-depth study on the structure and properties of these kinds of materials.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b02291

DOI: 10.1021/acs.analchem.7b02291

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.