5 years ago

Stabilizing silica nanoparticles in high saline water by using polyvinylpyrrolidone for reduction of asphaltene precipitation damage under dynamic condition

Mohammad Reza Aghajanzadeh, Mohammad Sharifi

Publication date: Available online 14 December 2018

Source: Chinese Journal of Chemical Engineering

Author(s): Mohammad Reza Aghajanzadeh, Mohammad Sharifi

Abstract

In this study, the performance of stable nanofluid containing SiO2 nanoparticles dispersed and stabilized in high salinity brine for asphaltene inhibition in dynamic condition is evaluated. In the first stage of this work, the stability of silica nanoparticles in different range of water salinity (0–100,000 mg/lit) is investigated. Next, stable nanofluid containing highest salinity is selected as asphaltene inhibitor agent to inject in to the damaged core sample. The estimated value of oil recovery for base case, after damage process and after inhibition of asphaltene precipitation using nanofluid are 51.6%, 36.1% and 46.7%, respectively. The results showed the reduction in core damage after using nanofluid. In addition, the relative permeability curves are plotted for the base case, after damage process and also after inhibition of asphaltene precipitation using nanofluid. Comparison of relative permeability curves shows, relative permeability of oil phase decreased after damage process as compared with the base case. But after using nanofluid the oil relative permeability curve has shifted to the right and effective permeability of oil phase has been improved.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.