5 years ago

Ca2+ Release Channels Join the ‘Resolution Revolution’

Ryanodine receptors (RyRs) are calcium release channels expressed in the sarcoendoplasmic reticula of many cell types including cardiac and skeletal muscle cells. In recent years Ca2+ leak through RyRs has been implicated as a major contributor to the development of diseases including heart failure, muscle myopathies, Alzheimer’s disease, and diabetes, making it an important therapeutic target. Recent mammalian RyR1 cryoelectron microscopy (cryo-EM) structures of multiple functional states have clarified longstanding questions including the architecture of the transmembrane (TM) pore and cytoplasmic domains, the location and architecture of the channel gate, ligand-binding sites, and the gating mechanism. As we advance toward complete models of RyRs this new information enables the determination of domain–domain interfaces and the location and structural effects of disease-causing RyR mutations.

Publisher URL: www.sciencedirect.com/science

DOI: S0968000417300853

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.