5 years ago

Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance

Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance
Valeria Nicolosi, Chuanfang (John) Zhang, Aleksey Shmeliov, Jonathan N. Coleman, Georg S. Duesberg, Sang-Hoon Park, Andrés Seral-Ascaso, Niall McEvoy, Yury Gogotsi, Babak Anasori
2D transition-metal carbides and nitrides, known as MXenes, have displayed promising properties in numerous applications, such as energy storage, electromagnetic interference shielding, and catalysis. Titanium carbide MXene (Ti3C2Tx), in particular, has shown significant energy-storage capability. However, previously, only micrometer-thick, nontransparent films were studied. Here, highly transparent and conductive Ti3C2Tx films and their application as transparent, solid-state supercapacitors are reported. Transparent films are fabricated via spin-casting of Ti3C2Tx nanosheet colloidal solutions, followed by vacuum annealing at 200 °C. Films with transmittance of 93% (≈4 nm) and 29% (≈88 nm) demonstrate DC conductivity of ≈5736 and ≈9880 S cm−1, respectively. Such highly transparent, conductive Ti3C2Tx films display impressive volumetric capacitance (676 F cm−3) combined with fast response. Transparent solid-state, asymmetric supercapacitors (72% transmittance) based on Ti3C2Tx and single-walled carbon nanotube (SWCNT) films are also fabricated. These electrodes exhibit high capacitance (1.6 mF cm−2) and energy density (0.05 µW h cm−2), and long lifetime (no capacitance decay over 20 000 cycles), exceeding that of graphene or SWCNT-based transparent supercapacitor devices. Collectively, the Ti3C2Tx films are among the state-of-the-art for future transparent, conductive, capacitive electrodes, and translate into technologically viable devices for next-generation wearable, portable electronics. Highly transparent and conductive Ti3C2Tx films and their application as transparent, solid-state supercapacitors are demonstrated. Films with transmittance of 93% (≈4 nm) and 29% (≈88 nm) demonstrate DC conductivity of ≈5736 and ≈9880 S cm−1, respectively. The Ti3C2Tx films display impressive volumetric capacitance (676 F cm−3), high areal capacitance, and long lifetime in the transparent solid-state supercapacitor devices.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201702678

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.