5 years ago

Augmenting the efficacy of anti-cocaine catalytic antibodies through chimeric hapten design and combinatorial vaccination

Augmenting the efficacy of anti-cocaine catalytic antibodies through chimeric hapten design and combinatorial vaccination
Given the need for further improvements in anti-cocaine vaccination strategies, a chimeric hapten (GNET) was developed that combines chemically-stable structural features from steady-state haptens with the hydrolytic functionality present in transition-state mimetic haptens. Additionally, as a further investigation into the generation of an improved bifunctional antibody pool, sequential vaccination with steady-state and transition-state mimetic haptens was undertaken. While GNET induced the formation of catalytically-active antibodies, it did not improve overall behavioral efficacy. In contrast, the resulting pool of antibodies from GNE/GNT co-administration demonstrated intermediate efficacy as compared to antibodies developed from either hapten alone. Overall, improved antibody catalytic efficiency appears necessary to achieve the synergistic benefits of combining cocaine hydrolysis with peripheral sequestration.

Publisher URL: www.sciencedirect.com/science

DOI: S0960894X17307114

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.