4 years ago

Design, synthesis, biological evaluation and molecular modelling studies of novel diaryl substituted pyrazolyl thiazolidinediones as potent pancreatic lipase inhibitors

Design, synthesis, biological evaluation and molecular modelling studies of novel diaryl substituted pyrazolyl thiazolidinediones as potent pancreatic lipase inhibitors
A series of novel diaryl substituted pyrazolyl 2,4-thiazolidinediones were synthesized via reaction of appropriate pyrazolecarboxaldehydes with 2,4-thiazolidinedione (TZD) and nitrobenzyl substituted 2,4-thiazolidinedione. The resulting compounds were screened in vitro for pancreatic lipase (PL) inhibitory activity. Two assay protocols were performed viz., methods A and B using p-nitrophenyl butyrate and tributyrin as substrates, respectively. Compound 11e exhibited potent PL inhibitory activity (IC50 =4.81µM and Xi50 =10.01, respectively in method A and B), comparable to that of the standard drug, orlistat (IC50 =0.99µM and Xi50 =3.72). Presence of nitrobenzyl group at N-3 position of TZD and nature of substituent at para position of phenyl ring at C-3 position of pyrazole ring notably affected the PL inhibitory activity of the tested compounds. Enzyme inhibition kinetics of 11e revealed its reversible competitive inhibition, similar to that of orlistat. Molecular docking studies validated the rationale of pharmacophoric design and are in accordance to the in vitro results. Compound 11e exhibited a potential MolDock score of −153.349kcal/mol. Further, the diaryl pyrazolyl wing exhibited hydrophobic interactions with the amino acids of the hydrophobic lid domain. Moreover, the carbonyl group at 2nd position of the TZD ring existed adjacent to Ser 152 (≈3Å) similar to that of orlistat. A 10ns molecular dynamics simulation of 11ePL complex revealed a stable binding conformation of 11e in the active site of PL (Maximum RMSD3Å). The present study identified novel thiazolidinedione based leads with promising PL inhibitory activity. Further development of the leads might result in potent PL inhibitors.

Publisher URL: www.sciencedirect.com/science

DOI: S0960894X17306820

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.