5 years ago

Novel derivatives of deoxycholic acid bearing aliphatic or cyclic diamine moieties at the C-3 position: Synthesis and evaluation of anti-proliferative activity

Novel derivatives of deoxycholic acid bearing aliphatic or cyclic diamine moieties at the C-3 position: Synthesis and evaluation of anti-proliferative activity
A new library of deoxycholic acid derivatives bearing nitrogen-containing moieties at the C-3 position was synthesised from epoxy derivative 1 via an epoxide ring-opening reaction promoted by aliphatic or cyclic diamines and fully characterised by NMR and mass-spectroscopy. The synthesised compounds were screened for cytotoxicity against four human tumour cell lines. The results showed that some of the novel diamine-bearing derivatives displayed improved anti-proliferative activities over the parent compound DCA. Among them, a 1-methylpiperazine containing compound (6) showed promising activity and the highest selectivity against tumour cells of enterohepatic origin (HepG2: IC50 =3.6µM, SI=9.0; HuTu-80: IC50 =4.6µM, SI=6.9) and was identified as a lead molecule.

Publisher URL: www.sciencedirect.com/science

DOI: S0960894X17306868

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.