5 years ago

Bioactive polyprenylated benzophenone derivatives from the fruits extracts of Garcinia xanthochymus

Bioactive polyprenylated benzophenone derivatives from the fruits extracts of Garcinia xanthochymus
Two new polycyclic prenylated xanthones (1 and 2) and a new phenylpropanoid glycoside (3), along with seven known compounds (410) were isolated from the fruits of Garcinia xanthochymus. The structures were elucidated by 1D- and 2D-NMR, and HRMS experiments. The isolates were evaluated for their inhibitory effects against the viability of U251MG glioblastoma and MDA-MB-231 breast cancer cells that harbor an aberrantly active signal transducer and exhibit activation of transcription 3 (STAT3), and compared to normal NIH3T3 mouse fibroblasts. Among the isolates, compounds 1, 2, 5, and 69 inhibited the viability of glioma cancer cells with IC50 values in the range of 1.6–6.5μM. Furthermore, treatment of U251MG with 6 and 7 inhibited intracellular STAT3 tyrosine phosphorylation and glioma cell migration in vitro, respectively.

Publisher URL: www.sciencedirect.com/science

DOI: S0960894X17306844

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.