3 years ago

On-the-Fly CASPT2 Surface-Hopping Dynamics

On-the-Fly CASPT2 Surface-Hopping Dynamics
Jae Woo Park, Toru Shiozaki
We report the development of programs for on-the-fly surface-hopping dynamics simulations in the gas and condensed phases on the potential energy surfaces computed by multistate multireference perturbation theory (XMS-CASPT2) with full internal contraction. On-the-fly nonadiabatic dynamics simulations are made possible by improving the algorithm for XMS-CASPT2 nuclear energy gradient and derivative coupling evaluation. The program is interfaced to a surface-hopping dynamics program, Newton-X, and a classical molecular dynamics package, tinker, to realize such simulations. On-the-fly XMS-CASPT2 surface-hopping dynamics simulations of 9H-adenine and an anionic GFP model chromophore (para-hydroxybenzilideneimidazolin-5-one) in water are presented to demonstrate the applicability of our program to sizable systems. Our program is implemented in the bagel package, which is publicly available under the GNU General Public License.

Publisher URL: http://dx.doi.org/10.1021/acs.jctc.7b00559

DOI: 10.1021/acs.jctc.7b00559

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.