4 years ago

Numerical Difficulties Computing Electrostatic Potentials Near Interfaces with the Poisson–Boltzmann Equation

Numerical Difficulties Computing Electrostatic Potentials Near Interfaces with the Poisson–Boltzmann Equation
Alexander H. Boschitsch, Marcia O. Fenley, Robert C. Harris
Many researchers compute surface maps of the electrostatic potential (φ) with the Poisson–Boltzmann (PB) equation to relate the structural information obtained from X-ray and NMR experiments to biomolecular functions. Here we demonstrate that the usual method of obtaining these surface maps of φ, by interpolating from neighboring grid points on the solution grid generated by a PB solver, generates large errors because of the large discontinuity in the dielectric constant (and thus in the normal derivative of φ) at the surface. The Cartesian Poisson–Boltzmann solver contains several features that reduce the numerical noise in surface maps of φ: First, CPB introduces additional mesh points at the Cartesian grid/surface intersections where the PB equation is solved. This procedure ensures that the solution for interior mesh points only references nodes on the interior or on the surfaces; similarly for exterior points. Second, for added points on the surface, a second order least-squares reconstruction (LSR) is implemented that analytically incorporates the discontinuities at the surface. LSR is used both during the solution phase to compute φ at the surface and during postprocessing to obtain φ, induced charges, and ionic pressures. Third, it uses an adaptive grid where the finest grid cells are located near the molecular surface.

Publisher URL: http://dx.doi.org/10.1021/acs.jctc.7b00487

DOI: 10.1021/acs.jctc.7b00487

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.