3 years ago

Relativistic Approximations to Paramagnetic NMR Chemical Shift and Shielding Anisotropy in Transition Metal Systems

Relativistic Approximations to Paramagnetic NMR Chemical Shift and Shielding Anisotropy in Transition Metal Systems
Juha Vaara, Syed Awais Rouf, Jiří Mareš
We apply approximate relativistic methods to calculate the magnetic property tensors, i.e., the g-tensor, zero-field splitting (ZFS) tensor (D), and hyperfine coupling (HFC) tensors, for the purpose of constructing paramagnetic nuclear magnetic resonance (pNMR) shielding tensors. The chemical shift and shielding anisotropy are calculated by applying a modern implementation of the classic Kurland–McGarvey theory ( J. Magn. Reson. 1970, 2, 286), which formulates the shielding tensor in terms of the g- and HFC tensors obtained for the ground multiplet, in the case of higher than doublet multiplicity defined by the ZFS interaction. The g- and ZFS tensors are calculated by ab initio complete active space self-consistent field and N-electron valence-state perturbation theory methods with spin–orbit (SO) effects treated via quasidegenerate perturbation theory. Results obtained with the scalar relativistic (SR) Douglas–Kroll–Hess Hamiltonian used for the g- and ZFS tensor calculations are compared with nonrelativistically based computations. The HFC tensors computed using the fully relativistic four-component matrix Dirac–Kohn–Sham approach are contrasted against perturbationally SO-corrected nonrelativistic results in the density functional theory framework. These approximations are applied on paramagnetic metallocenes (MCp2) (M = Ni, Cr, V, Mn, Co, Rh, Ir), a Co(II) pyrazolylborate complex, and a Cr(III) complex. SR effects are found to be small for g and D in these systems. The HFCs are found to be more influenced by relativistic effects for the 3d systems. However, for some of the 3d complexes, nonrelativistic calculations give a reasonable agreement with the experimental chemical shift and shielding anisotropy. The influence of scalar relativity is strong for the 5d IrCp2 system. This mixed ab initio/DFT technique, with a fully relativistic method used for the critical HFC tensor, should be useful for the treatment of both electron correlation and relativistic effects at a reasonable computational cost to compute the pNMR shielding tensors in transition metal systems.

Publisher URL: http://dx.doi.org/10.1021/acs.jctc.7b00168

DOI: 10.1021/acs.jctc.7b00168

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.