3 years ago

Transformative Heterointerface Evolution and Plasmonic Tuning of Anisotropic Trimetallic Nanoparticles

Transformative Heterointerface Evolution and Plasmonic Tuning of Anisotropic Trimetallic Nanoparticles
Jae-Ho Kim, Mouhong Lin, Jwa-Min Nam, Jeong-Wook Oh, Gyeong-Hwan Kim
Multicomponent nanoparticles that incorporate multiple nanocrystal domains into a single particle represent an important class of material with highly tailorable structures and properties. The controlled synthesis of multicomponent NPs with 3 or more components in the desired structure, particularly anisotropic structure, and property is, however, challenging. Here, we developed a polymer and galvanic replacement reaction-based transformative heterointerface evolution (THE) method to form and tune gold–copper–silver multimetallic anisotropic nanoparticles (MAPs) with well-defined configurations, including structural order, particle and junction geometry, giving rise to extraordinarily high tunability in the structural design, synthesis and optical property of trimetallic plasmonic nanoantenna structures. MAPs can easily, flexibly integrate multiple surface plasmon resonance (SPR) peaks and incorporate various plasmonic field localization and enhancement within one structure. Importantly, a heteronanojunction in these MAPs can be finely controlled and hence tune the SPR properties of these structures, widely covering UV, visible and near-infrared range. The development of the THE method and new findings in synthesis and property tuning of multicomponent nanostructures pave ways to the fabrication of highly tailored multicomponent nanohybrids and realization of their applications in optics, energy, catalysis and biotechnology.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b04202

DOI: 10.1021/jacs.7b04202

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.