3 years ago

Investigation and Demonstration of Catalyst/Initiator-Driven Selectivity in Thiol-Michael Reactions

Investigation and Demonstration of Catalyst/Initiator-Driven Selectivity in Thiol-Michael Reactions
Raghavendra R. Murthy, Brian H. Northrop, Stephen H. Frayne
Thiol-Michael “click” reactions are essential synthetic tools in the preparation of various materials including polymers, dendrimers, and other macromolecules. Despite increasing efforts to apply thiol-Michael chemistry in a controlled fashion, the selectivity of base- or nucleophile-promoted thiol-Michael reactions in complex mixtures of multiple thiols and/or acceptors remains largely unknown. Herein, we report a thorough fundamental study of the selectivity of thiol-Michael reactions through a series of 270 ternary reactions using 1H NMR spectroscopy to quantify product selectivity. The varying influences of different catalysts/initiators are explored using ternary reactions between two Michael acceptors and a single thiol or between a single Michael acceptor and two thiols using three different catalysts/initiators (triethylamine, DBU, and dimethylphenylphosphine) in chloroform. The results from the ternary reactions provide a platform from which sequential quaternary, one-pot quaternary, and sequential senary thiol-Michael reactions were designed and their selectivities quantified. These results provide insights into the design of selective thiol-Michael reactions that can be used for the synthesis and functionalization of multicomponent polymers and further informs how catalyst/initiator choice influences the reactivity between a given thiol and Michael acceptor.

Publisher URL: http://dx.doi.org/10.1021/acs.joc.7b01200

DOI: 10.1021/acs.joc.7b01200

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.