3 years ago

Parameterization of phosphine ligands demonstrates enhancement of nickel catalysis via remote steric effects

Parameterization of phosphine ligands demonstrates enhancement of nickel catalysis via remote steric effects
Abigail G. Doyle, Kevin Wu
The field of Ni-catalysed cross-coupling has seen rapid recent growth because of the low cost of Ni, its earth abundance, and its ability to promote unique cross-coupling reactions. Whereas advances in the related field of Pd-catalysed cross-coupling have been driven by ligand design, the development of ligands specifically for Ni has received minimal attention. Here, we disclose a class of phosphines that enable the Ni-catalysed Csp3 Suzuki coupling of acetals with boronic acids to generate benzylic ethers, a reaction that failed with known ligands for Ni and designer phosphines for Pd. Using parameters to quantify phosphine steric and electronic properties together with regression statistical analysis, we identify a model for ligand success. The study suggests that effective phosphines feature remote steric hindrance, a concept that could guide future ligand design tailored to Ni. Our analysis also reveals that two classic descriptors for ligand steric environment—cone angle and % buried volume—are not equivalent, despite their treatment in the literature.

Publisher URL: http://dx.doi.org/10.1038/nchem.2741

DOI: 10.1038/nchem.2741

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.