5 years ago

High Quality Biowaxes from Fatty Acids and Fatty Esters: Catalyst and Reaction Mechanism for Accompanying Reactions

High Quality Biowaxes from Fatty Acids and Fatty Esters: Catalyst and Reaction Mechanism for Accompanying Reactions
Avelino Corma, Michael Renz, Borja Oliver-Tomas
Biowaxes are interesting materials for pharmaceutical industry and consumer goods. Here the production of waxes from alternative renewable resources has been evaluated on the basis of the ketonic decarboxylation of fatty acids. The latter converts carboxylic acids (or their derivatives) into ketones with almost double chain length. Hence, sunflower oil was employed as starting material and passed over monoclinic zirconium. A wax fraction of 43% yield was obtained, though high content of molecules with more than 30 carbon atoms was not achieved due to prevalent carbon chain degradation. However, reaction of methyl stearate over zirconium oxide gave 60% wax fraction. Together with the waxes, an almost oxygen-free diesel fraction was obtained in more than 25% yield. Labeling experiments showed that the ketone intermediate is degraded by a radical chain mechanism. It is further concluded that methyl stearate radical formation is induced by carbon–carbon bond scission at high temperature whereas the glycerol part of the triglyceride may act as radical initiator. As a consequence, long linear alkane waxes should be produced in the absence of glycerol (moieties). The exploitation of the side-product as high quality diesel together with the waxes improves the economic feasibility of the process.

Publisher URL: http://dx.doi.org/10.1021/acs.iecr.7b01794

DOI: 10.1021/acs.iecr.7b01794

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.