3 years ago

Extracellular matrix nitration alters growth factor release and activates bioactive complement in human retinal pigment epithelial cells

Jie Gong, Mark A. Fields, Hannah E. Bowrey, Hui Cai, Lucian V. Del Priore, Ernesto F. Moreira

by Mark A. Fields, Hannah E. Bowrey, Jie Gong, Ernesto F. Moreira, Hui Cai, Lucian V. Del Priore


We have shown previously that non-enzymatic nitration (NEN) of the extracellular matrix (ECM), which serves as a model of Bruch’s membrane (BM) aging, has a profound effect on the behavior of the overlying retinal pigment epithelial (RPE) cells, including altered phagocytic ability, reduced cell adhesion, and inhibition of proliferation. We know that transplanted RPE monolayers will encounter a hostile sub-RPE environment, including age-related alterations in BM that may compromise cell function and survival. Here we use our previous NEN model of BM aging to determine the effects of NEN of the ECM on growth factor release and complement activation in RPE cells.


Human induced-pluripotent stem cells (iPSCs) were differentiated into RPE cells, and confirmed by immunohistochemistry, confocal microscopy, and polymerase chain reaction. IPSC-derived RPE cells were plated onto RPE-derived ECM under untreated or nitrite-modified conditions. Cells were cultured for 7 days and barrier function measured by transepithelial resistance (TER). Vascular endothelial growth factor (VEGF), pigment epithelium-derived factor (PEDF), and complement component C3a were measured using enzyme-linked immunosorbent assay (ELISA).


On average nitrite-modified ECM increased VEGF release both apically and basally by 0.15 ± 0.014 ng/mL (p <0.0001) and 0.21 ± 0.022 ng/mL (p <0.0001), respectively, in iPSC-derived RPE cells. Nitrite-modified ECM increased PEDF release in iPSC-derived RPE cells apically by 0.16 ± 0.031 ng/mL (p <0.0001), but not basally (0.27 ± 0.015 vs. 0.32 ± 0.029 ng/mL, (p >0.05)). Nitrite-modified ECM increased production of C3a in iPSC-derived RPE cells by 0.52 ± 0.123 ng/mL (p <0.05).


Nitrite-modified ECM increased VEGF, PEDF release, and C3a production in human iPSC-derived RPE cells. This model demonstrates changes seen in the basement membrane can lead to alterations in the cell biology of the RPE cells that may be related to the development of age-related macular degeneration.

Publisher URL: http://journals.plos.org/plosone/article

DOI: 10.1371/journal.pone.0177763

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.