5 years ago

Efficient Delivery of Quantum Dots into the Cytosol of Cells Using Cell-Penetrating Poly(disulfide)s

Efficient Delivery of Quantum Dots into the Cytosol of Cells Using Cell-Penetrating Poly(disulfide)s
Stefan Matile, Eline Bartolami, Emmanuel Derivery, Marcos Gonzalez-Gaitan
Quantum dots (QDs) are extremely bright, photostable, nanometer particles broadly used to investigate single molecule dynamics in vitro. However, the use of QDs in vivo to investigate single molecule dynamics is impaired by the absence of an efficient way to chemically deliver them into the cytosol of cells. Indeed, current methods (using cell-penetrating peptides for instance) provide very low yields: QDs stay at the plasma membrane or are trapped in endosomes. Here, we introduce a technology based on cell-penetrating poly(disulfide)s that solves this problem: we deliver about 70 QDs per cell, and 90% appear to freely diffuse in the cytosol. Furthermore, these QDs can be functionalized, carrying GFP or anti-GFP nanobodies for instance. Our technology thus paves the way toward single molecule imaging in cells and living animals, allowing to probe biophysical properties of the cytosol.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b02952

DOI: 10.1021/jacs.7b02952

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.