5 years ago

Solvent-dependent self-assembly and morphological transition of low-molecular-weight azobenzene organogel

Solvent-dependent self-assembly and morphological transition of low-molecular-weight azobenzene organogel
A novel low molecular weight organogelator (LMOG) containing an azobenzene group has been designed and synthesized. Stable gels could be formed in various organic solvents. UV–Vis spectroscopy indicated that the sol-gel transition of the organogels could be reversibly tuned by UV/visible light irradiations. Importantly, scanning electron microscopy (SEM) revealed that the characteristic gelation morphologies would vary from solvents of different polarities. FT-IR, XRD and rheological measurements demonstrated that the different nanostructures in polar and non-polar solvents might result from the differences in the intermolecular hydrogen bonding, π-π stacking driving forces as well as the different stacking models for the formation of the gels. Moreover, as an efficient phase-selective gelator, this photo-switchable gel could perform as an efficient absorbent and water cleaner to remove pollutants (e.g. rhodamine B).

Publisher URL: www.sciencedirect.com/science

DOI: S004040201730501X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.