4 years ago

Supramolecular Copolymers: Structure and Composition Revealed by Theoretical Modeling

Supramolecular Copolymers: Structure and Composition Revealed by Theoretical Modeling
Anindita Das, Miguel Garcia-Iglesias, Anja R. A. Palmans, Huub M. M. ten Eikelder, Ghislaine Vantomme, Albert J. Markvoort, E. W. Meijer
Supramolecular copolymers, non-covalent analogues of synthetic copolymers, constitute a new and promising class of polymers. In contrast to their covalent counterparts, the details of their mechanism of formation, as well as the factors determining their composition and length, are still poorly understood. Here, the supramolecular copolymerization between two slightly structurally different benzene-1,3,5-tricarboxamide (BTA) monomers functionalized with either oligodimethylsiloxane (oDMSi) or alkyl side chains is unraveled by combining experimental and theoretical approaches. By applying the “sergeant-and-soldiers” approach using circular dichroism (CD) experiments, we are able to obtain detailed insights into the structure and composition of these supramolecular copolymers. Moreover, we observe an unexpected chiral induction upon mixing two independently CD-silent solutions of the achiral (soldier) and chiral (sergeant) monomers. We find that the subtle differences in the chemical structure of the two monomers impact their homopolymerization mechanism: whereas alkyl-BTAs cooperatively self-assemble, oDMSi-BTAs self-assemble in an isodesmic manner. The effect of these mechanistic differences in the supramolecular copolymerization process is investigated as a function of the composition of the two monomers and explicitly rationalized by mathematical modeling. The results show that, at low fractions of oDMSi-BTA sergeants (<10 mol%), the polymerization process is cooperative and the supramolecular helicity is biased toward the helical preference of the sergeant. However, at higher fractions of oDMSi-BTA sergeant (>25 mol%), the isodesmic assembly of the increasing amounts of sergeant becomes more dominant, and different species start to coexist in the copolymerization process. The analysis of the experimental data with a newly developed theoretical model allows us to quantify the thermodynamic parameters, the distribution of different species, and the compositions and stack lengths of the formed supramolecular copolymers existing at various feed ratios of the two monomers.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b02835

DOI: 10.1021/jacs.7b02835

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.