5 years ago

Molecular Insight into Assembly Mechanisms of Porous Aromatic Frameworks

Molecular Insight into Assembly Mechanisms of Porous Aromatic Frameworks
Christian J. Doonan, Aaron W. Thornton, Andrew Tarzia, David M. Huang
The structural and dynamic factors governing porosity in porous aromatic frameworks (PAFs) are investigated using coarse-grained molecular dynamics simulations. PAFs form amorphous, porous networks with potential for gas storage and separation applications. We focus on a series of four PAFs—PAF-1, PPN-1, PPN-2, and PPN-3—which exhibit an unexpected trend in porosity as the structure of the PAF monomer is varied. The simulations suggest that nonbonding dispersion interactions that stabilize misbound monomer configurations play an essential role in the formation of porosity-reducing interpenetrated frameworks in PAFs comprising the larger PPN-1 and PPN-2 monomers; on the other hand, the simulations indicate that the steric bulk of a key reaction intermediate acts to limit interpenetration in PAFs made up of the smaller PAF-1 and PPN-3 monomers. The simulations also show that the rate of cluster growth, which depends largely on the monomer concentration used in the experimental synthesis, is significantly higher for PPN-1 and PPN-2, which would exacerbate the kinetic trapping of interpenetrated misbound configurations. This work provides design rules for synthesizing highly porous amorphous networks through the choice of monomer structure and reaction conditions that limit framework interpenetration.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b04860

DOI: 10.1021/acs.jpcc.7b04860

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.