4 years ago

Exploiting Particle Mutual Interactions To Enable Challenging Dielectrophoretic Processes

Exploiting Particle Mutual Interactions To Enable Challenging Dielectrophoretic Processes
Blanca H. Lapizco-Encinas, Mario A. Saucedo-Espinosa
Dielectrophoresis (DEP) is the motion of particles under the influence of a nonuniform electric field. In insulator-based dielectrophoresis (iDEP), the required nonuniform electric fields are generated with insulating structures embedded in a microchannel. These structures distort the electric field distribution when an electric potential is applied. This contribution presents an experimental characterization of the electrokinetic (EK) and DEP velocities of a set of target particles, under DC potentials, when additional innocuous particles are used as fillers. Streak-based particle velocimetry in a tapered channel was used to assess particle motion. Filler particles of various sizes were added at different volume fractions (ϕ) to suspending media containing the target particles/cells. The presence of the filler particles resulted in electric field distortions and dissimilar particle behaviors caused by particle–particle interactions. These particle mutual interactions were exploited to improve the enrichment of low-abundance yeast cells in an iDEP channel. It was shown that the smallest studied filler particles (500 nm) have the potential to aid the enrichment of low-abundance yeast cells when filler volume fractions ∼1 × 10–5 v/v are used. Enrichment factors of ∼115 were achieved by applying electric potentials as low as 500 V.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b02008

DOI: 10.1021/acs.analchem.7b02008

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.