5 years ago

Effect of Defect Site Preorganization on Fe(III) Grafting and Stability: A Comparative Study of Delaminated Zeolite vs Amorphous Silica Supports

Effect of Defect Site Preorganization on Fe(III) Grafting and Stability: A Comparative Study of Delaminated Zeolite vs Amorphous Silica Supports
Nicolás A. Grosso-Giordano, Alexander Katz, Alexander Okrut, Stacey I. Zones, Gary J. Long, Fernande Grandjean, Dianne J. Xiao, Alexander J. Yeh
The stabilization of isolated grafted Fe3+ sites on siliceous supports is investigated by a comparative study of crystalline versus amorphous materials. Our synthetic approach treats crystalline delaminated zeolite DZ-1 and amorphous silica (SiO2) with an aqueous NaFeEDTA cation precursor complex, to result in grafting of isolated Fe3+ sites via covalent attachment to support hydroxyl groups. Thermogravimetric analysis and UV–visible spectroscopy demonstrate the complete detachment of chelating EDTA ligand upon Fe3+ grafting on both supports. Before calcination treatment, both Fe/DZ-1 and Fe/SiO2 have similar UV–visible spectral features, with absorption bands at 208–225 and 257 nm, characteristic of framework Fe3+ sites in zeolites. Calcination does not affect the UV–visible spectroscopic characteristics of Fe/DZ-1 but changes the spectrum of Fe/SiO2 to a single absorption band at 260 nm, indicating better thermal stability of Fe3+ sites in Fe/DZ-1 as compared to Fe/SiO2. This stability persists for Fe/DZ-1 even during alkane oxidation catalysis in the presence of hydrogen peroxide, which causes aggregation of Fe3+ into oxide oligomers for Fe/SiO2. 57Fe Mössbauer spectroscopy of calcined materials indicates a more uniform distribution of sites in Fe/DZ-1 relative to Fe/SiO2. We thus attribute the greater robustness and site uniformity of Fe/DZ-1 to the chelation of Fe3+ by the rigid crystalline silicate DZ-1 framework, engendered by the spatial preorganization of grafting hydroxyls groups within its uniform defect sites, which are templated by framework B3+ removal during delamination. Such preorganization enables cooperativity between neighboring hydroxyl groups. This contrasts with more randomly distributed hydroxyl groups on SiO2, which lack such preorganization, leading to decreased hydrothermal stability and an Fe3+ grafting density that is ∼7-fold lower for Fe/SiO2 relative to Fe/DZ-1. These observations reveal how the silicate surface onto which a cation is grafted can act as a relevant ligand, capable of controlling material synthesis and functionality akin to ligands in homogeneous metal complexes, and demonstrate the advantages of support crystallinity in having this ligand be hydrothermally stable and tunable via templating.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b02062

DOI: 10.1021/acs.chemmater.7b02062

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.